Base excision repair of 8-oxoG in dinucleosomes
نویسندگان
چکیده
In this work we have studied the effect of chromatin structure on the base excision repair (BER) efficiency of 8-oxoG. As a model system we have used precisely positioned dinucleosomes assembled with linker histone H1. A single 8-oxoG was inserted either in the linker or the core particle DNA within the dinucleosomal template. We found that in the absence of histone H1 the glycosylase OGG1 removed 8-oxoG from the linker DNA and cleaved DNA with identical efficiency as in the naked DNA. In contrast, the presence of histone H1 resulted in close to 10-fold decrease in the efficiency of 8-oxoG initiation of repair in linker DNA independently of linker DNA length. The repair of 8-oxoG in nucleosomal DNA was very highly impeded in both absence and presence of histone H1. Chaperone-induced uptake of H1 restored the efficiency of the glycosylase induced removal of 8-oxoG from linker DNA, but not from the nucleosomal DNA. We show, however, that removal of histone H1 and nucleosome remodelling are both necessary and sufficient for an efficient removal of 8-oxoG in nucleosomal DNA. Finally, a model for BER of 8-oxoG in chromatin templates is suggested.
منابع مشابه
Replication-Associated Repair of Adenine:8-Oxoguanine Mispairs by MYH
Cellular DNA is constantly exposed to the risk of oxidation. 8-oxoguanine (8-oxoG) is one of the major DNA lesions generated by oxidation, which is primarily corrected by base excision repair. When it is not repaired prior to replication, replicative DNA polymerases yield misinsertion of an adenine (A) opposite the 8-oxoG on the template strand, generating an A:8-oxoG mispair. MYH, a mammalian ...
متن کاملThe mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine
The excision of 8-oxoguanine (oxoG) by the human 8-oxoguanine DNA glycosylase 1 (hOGG1) base-excision repair enzyme was studied by using the QM/MM (M06-2X/6-31G(d,p):OPLS2005) calculation method and nuclear magnetic resonance (NMR) spectroscopy. The calculated glycosylase reaction included excision of the oxoG base, formation of Lys249-ribose enzyme-substrate covalent adduct and formation of a ...
متن کاملDNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion
A major base lesion resulting from oxidative stress is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxoG) that has ambiguous coding potential. Error-free DNA synthesis involves 8-oxoG adopting an anti-conformation to base pair with cytosine whereas mutagenic bypass involves 8-oxoG adopting a syn-conformation to base pair with adenine. Left unrepaired the syn-8-oxoG/dAMP base pair results in a G-C to ...
متن کاملAPE1-dependent repair of DNA single-strand breaks containing 3′-end 8-oxoguanine
DNA single-strand breaks containing 3'-8-oxoguanine (3'-8-oxoG) ends can arise as a consequence of ionizing radiation and as a result of DNA polymerase infidelity by misincorporation of 8-oxodGMP. In this study we examined the mechanism of repair of 3'-8-oxoG within a single-strand break using purified base excision repair enzymes and human whole cell extracts. We find that 3'-8-oxoG inhibits l...
متن کاملModulation of base excision repair of 8-oxoguanine by the nucleotide sequence
8-Oxoguanine (8-oxoG) is a major product of oxidative DNA damage, which induces replication errors and interferes with transcription. By varying the position of single 8-oxoG in a functional gene and manipulating the nucleotide sequence surrounding the lesion, we found that the degree of transcriptional inhibition is independent of the distance from the transcription start or the localization w...
متن کامل